• About
  • Sections
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos
  • AGU.org
  • Career Center
  • Join AGU
  • Give to AGU
  • About
  • Sections
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos
Skip to content
  • AGU.org
  • Career Center
  • Join AGU
  • Give to AGU
Eos

Eos

Science News by AGU

Support Eos
Sign Up for Newsletter
  • About
  • Sections
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos

olivine

Harry Green II
Posted inNews

Harry W. Green II (1940–2017)

by P. C. Burnley, W.-P. Chen, L. F. Dobrzhinetskaya, Z.-M. Jin, H. Jung, R. Liebermann, M. Martins-Green, Alexandre Schubnel, Y. Wang and J. Zhang 2 May 201822 September 2022

By keenly probing mantle rheology, interactions of deformations and phase transitions, and microscopic features, he made major contributions to petrology, mineralogy, and earthquake science.

Secondary electron microscope images showing microstructures of stressed grains.
Posted inResearch Spotlights

Probing the Grain-Scale Processes That Drive Plate Tectonics

by Terri Cook 8 December 201722 September 2022

New experimental data suggest that rock composition may play a critical role in forming and perpetuating shear zones.

Posts pagination

Newer posts 1 2
A view of a Washington, D.C., skyline from the Potomac River at night. The Lincoln Memorial (at left) and the Washington Monument (at right) are lit against a purple sky. Over the water of the Potomac appear the text “#AGU24 coverage from Eos.”

Features from AGU Publications

Research Spotlights

Can Microorganisms Thrive in Earth’s Atmosphere, or Do They Simply Survive There?

7 August 20257 August 2025
Editors' Highlights

How Flexible Enhanced Geothermal Systems Control Their Own Seismicity

7 August 20255 August 2025
Editors' Vox

Early-Career Book Publishing: Growing Roots as Scholars

6 August 202530 July 2025
Eos logo at left; AGU logo at right

About Eos
ENGAGE
Awards
Contact

Advertise
Submit
Career Center
Sitemap

© 2025 American Geophysical Union. All rights reserved Powered by Newspack