Photo of a large crater on the moon.
Aristarchus Crater, taken by NASA's Lunar Reconnaissance Orbiter spacecraft on August 6, 2018. Credit: NASA
Editors’ Highlights are summaries of recent papers by AGU’s journal editors.
Source: Earth and Space Science

The surface of the Moon hides a complex and varied geology underneath. To unravel the Moon’s rich geological history, we rely on geophysical data acquired over decades of lunar missions. However, processing and interpretation of the remotely acquired data is not straightforward. Hence, new and sophisticated methods of processing and analyzing data are needed to extract the information necessary to detect and define lunar subsurface structures.

Ai et al. [2025] apply a new method combining an edge-detection algorithm, noise reduction techniques, and 3D inversion with high resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL). The new approach allows them to sharply define the location and shape of a negative gravity anomaly beneath the Aristarchus Crater (the brightest feature on the Moon, located in Oceanus Procellarum, or “Ocean of Storms”). It confirms a complex geological setting involving crustal relief, fracturing caused by the impactor that formed the crater, dilation, and uplift of a volcanic unit. This study is important because it demonstrates a new method that will be useful to other researchers working on the Moon, and it advances our knowledge of lunar geology.  

Density contrast between subsurface masses in the subsurface of Aristarchus Crater. The distinction between negative anomaly (blue) and positive anomaly areas emerges very clearly, representing different geological processes.  The panels on the right indicate the performance of the models. Credit: Ai et al. [2025], Figure 21

Citation: Ai, H., Huang, Q., Ekinci, Y. L., Alvandi, A., & Narayan, S. (2025). Robust edge detection for structural mapping beneath the Aristarchus Plateau on the Moon using gravity data. Earth and Space Science, 12, e2025EA004379. https://doi.org/10.1029/2025EA004379

—Graziella Caprarelli, Editor-in-Chief, Earth and Space Science

Text © 2025. The authors. CC BY-NC-ND 3.0
Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.