• About
  • Sections
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive
  • Science Policy Tracker
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos
  • AGU.org
  • Career Center
  • Join AGU
  • Give to AGU
  • About
  • Sections
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive
  • Science Policy Tracker
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos
Skip to content
  • AGU.org
  • Career Center
  • Join AGU
  • Give to AGU
Eos

Eos

Science News by AGU

Support Eos
Sign Up for Newsletter
  • About
  • Sections
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive
  • Science Policy Tracker
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos

jet stream

Satellite image of the United States
Posted inResearch Spotlights

How Will the Jet Stream Respond to Future Warming?

by Terri Cook 20 May 201928 February 2023

Simulations that test different approaches to modeling radiation suggest a commonly used scheme fails to fully capture changes in midlatitude circulation associated with climate change.

Incorporating complex ozone chemistry in climate models can improve scientific understanding of the jet stream’s behavior.
Posted inResearch Spotlights

Including Ozone Complexities in Climate Change Projections

by B. Bane 22 March 201728 February 2023

A simplified view of ozone chemistry can cause climate models to overestimate the response of jet streams to increasing greenhouse gases.

Posted inResearch Spotlights

Polar Warming Makes the Jet Stream Stable, Not Wavy or Blocked

by C. Schultz 3 February 201528 February 2023

An idealized climate model suggests polar warming stabilizes the jet stream and reduces atmospheric blocking at midlatitudes.

Posts pagination

Newer posts 1 2
A view of a Washington, D.C., skyline from the Potomac River at night. The Lincoln Memorial (at left) and the Washington Monument (at right) are lit against a purple sky. Over the water of the Potomac appear the text “#AGU24 coverage from Eos.”

Features from AGU Publications

Research Spotlights

Droughts Sync Up as the Climate Changes

18 September 202518 September 2025
Editors' Highlights

Unexpected Carbonate Phase Revealed by Advanced Simulations

25 September 2025
Editors' Vox

How Glacial Forebulges Shape the Seas and Shake the Earth

23 September 202519 September 2025
Eos logo at left; AGU logo at right

About Eos
ENGAGE
Awards
Contact

Advertise
Submit
Career Center
Sitemap

© 2025 American Geophysical Union. All rights reserved Powered by Newspack