• About
  • Special Reports
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • Postcards From the Field
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive: 2015–2025
  • Policy Tracker
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos
  • AGU.org
  • Career Center
  • Join AGU
  • Give to AGU
  • About
  • Special Reports
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • Postcards From the Field
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive: 2015–2025
  • Policy Tracker
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos
Skip to content
  • AGU.org
  • Career Center
  • Join AGU
  • Give to AGU
Eos

Eos

Science News by AGU

Support Eos
Sign Up for Newsletter
  • About
  • Special Reports
  • Topics
    • Climate
    • Earth Science
    • Oceans
    • Space & Planets
    • Health & Ecosystems
    • Culture & Policy
    • Education & Careers
    • Opinions
  • Projects
    • Postcards From the Field
    • ENGAGE
    • Editors’ Highlights
    • Editors’ Vox
    • Eos en Español
    • Eos 简体中文版
    • Print Archive: 2015–2025
  • Policy Tracker
  • Blogs
    • Research & Developments
    • The Landslide Blog
  • Newsletter
  • Submit to Eos

J. A. MacKinnon

A braided river in New Zealand
Posted inOpinions

Reimagining STEM Workforce Development as a Braided River

Pranoti Asher, Education and Public Outreach Manager for AGU by R. L. Batchelor, H. Ali, K. G. Gardner-Vandy, A. U. Gold, J. A. MacKinnon and P. M. Asher 19 April 202121 March 2023

A contemporary approach to today’s science careers looks less like a structured pipeline and more like a collection of paths that change and adapt to the needs of the individual.

Point Sal on the California coastline in an aerial view of the study site for the 2017 Inner Shelf Dynamics Experiment.
Posted inScience Updates

Untangling a Web of Interactions Where Surf Meets Coastal Ocean

by J. Lerczak, J. A. Barth, S. Celona, C. Chickadel, J. Colosi, F. Feddersen, M. Haller, S. Haney, L. Lenain, J. A. MacKinnon, J. MacMahan, K. Melville, A. O’Dea, P. Smit, A. Waterhouse and T. Xu 2 May 201911 January 2022

In 2017, an ocean research team launched an unprecedented effort to understand what drives ocean currents in the overlap regions between surf zones and continental shelves.

Posted inScience Updates

Breaking Internal Tides Keep the Ocean in Balance

by R. Pinkel, M. Alford, A. J. Lucas, S. Johnston, J. A. MacKinnon, A. Waterhouse, N. Jones, S. Kelly, J. Klymak, J. Nash, L. Rainville, Z. Zhao, H. Simmons and P. Strutton 17 November 201512 January 2022

By studying how underwater waves strike the continental slope off Tasmania, researchers seek to uncover the mechanisms that keep the circulation of the global ocean in balance.

Over a dark blue-green square appear the words Special Report: The State of the Science 1 Year On.

Features from AGU Publications

Research Spotlights

Making a Map to Make a Difference

11 February 202611 February 2026
Editors' Highlights

Inclusion, Diversity, Equity, and Accessibility: Excellent IDEA! 

18 February 202618 February 2026
Editors' Vox

A Double-Edged Sword: The Global Oxychlorine Cycle on Mars

10 February 202610 February 2026
Eos logo at left; AGU logo at right

About Eos
ENGAGE
Awards
Contact

Advertise
Submit
Career Center
Sitemap

© 2026 American Geophysical Union. All rights reserved Powered by Newspack